Researcher profiles and projects
Diamantina Institute
2020/2021
Diamantina Institute

The University of Queensland Diamantina Institute (UQDI) is a modern research facility where clinical and basic science are used to study cancer, immunology and genomic medicine.

The Institute has a vibrant community of over 300 researchers, students and support staff. We have delivered global, world-changing discoveries to humanity, such as the world’s first cervical cancer vaccine.

Based at the Translational Research Institute (TRI) beside the Princess Alexandra Hospital, UQDI has strong clinical interactions and world-class facilities that enable researchers to be at the forefront of their fields. UQDI’s position within the TRI allows for a much greater collaborative research environment, allowing our researchers to focus their efforts on turning their scientific discoveries into new treatments for diseases including a variety of cancers, arthritis and other autoimmune diseases.

UQDI focuses on bringing the discoveries of basic science to the patient.

We aim to translate the greatest opportunities for research discoveries into the cause, mechanism, prevention and treatment of major disease.

As part of The University of Queensland’s prestigious Faculty of Medicine, UQDI is committed to making a global difference to health outcomes.

For further information visit di.uq.edu.au

Undergraduate research projects

UQDI offers various opportunities for undergraduate students to gain research experience in biomedical research facilities including Summer and Winter research projects.

For further information visit di.uq.edu.au/study/undergraduate

Summer research projects

For further information visit: medicine.uq.edu.au/research/research-strategy-and-support-office/summer-research-program

Winter research projects

For further information visit: medicine.uq.edu.au/research/research-strategy-and-support-office/winter-research-projects

In July of each year UQDI offers a one week course in advanced immunology.

For further information visit: di.uq.edu.au/event/2293/advanced-immunology-course

Honours program

UQDI hosts honours students enrolled through other schools within the Faculties of Science or Medicine at UQ or affiliated Institutions. These include (but are not limited to) the School of Chemistry and Molecular Biosciences, or the School of Biomedical Sciences at UQ.

The Honours Program is a one year full time course. Students must fulfill the prerequisites of the undergraduate Faculty/School through which they are enrolled.

For further information visit: di.uq.edu.au/study/honours

MD student research experience

UQ Medicine is committed to enhancing the research training and experience for students in the Medical Program. There are a number of ways students can incorporate research training and experience into their medical degree.

For further information visit: medicine-program.uq.edu.au/research/research-your-medical-degree

Research higher degree

UQDI is an internationally recognised research facility where clinical and medical sciences converge in the translational research of cancer, disorders of immune regulation and genomic medicine.

For more information on starting a Higher Degree by Research with us, please visit: medicine.uq.edu.au/future-students#qt-study-foundation-tabs-4

Key research themes:

- Cancer
- Immunotherapy
- Genomic medicine
- Skin and skin cancer
- Immunity and Inflammation
Professor Gabrielle Belz

Research Field
Transcriptional regulation of immune cell development and memory formation in pathogen defence and mucosal immunity

Research Synopsis
Our work aims to understand how the immune system responds to infections including viruses, bacteria and parasites.

We are investigating how different types of immune cells develop, and what factors influence their decision to become one type of immune cell or another to mediate long term immune protection.

Understanding how the body deals with pathogens will give clues about how to enhance protective immunity. Our goal is to discover new therapies that boost our immune system to protect against infection.

Research Projects
• Identifying novel functions of innate lymphoid cells and NK cells in immune protection
• Unravelling the microbome-epithelial-immune interface protecting mucosal surfaces
• Elucidating the mechanisms responsible for the generation of protective immunity in response to lung and gastrointestinal pathogens

E g.belz@uq.edu.au
P 07 3443 8026
researchers.uq.edu.au/researcher/25382

Dr Anne-Sophie Bergot

Research Field
Immunology and pathogenesis of type 1 diabetes

Research Synopsis
Anne-Sophie is working with Prof. Ranjeny Thomas on Immunotherapy for type 1 diabetes (T1D).

We are investigating the use of a liposome based strategy to develop an antigen-specific therapy for T1D. Immunologically, it has a dual role of fostering regulatory T cell function and terminating pathogenic T cells.

Research Projects
• "Analysis of effector and regulatory T cells in type 1 diabetes" using various genetic, immunological or cell based assays

E a.bergot@uq.edu.au
P 07 3443 6946
researchers.uq.edu.au/researcher/2335
Associate Professor Antje Blumenthal

Research Field
Innate immunity and infectious diseases

Research Synopsis
With resistance to antibiotics on the rise, new insights into host defence mechanisms that control pathogenic bacteria are vital for the development of novel therapeutic interventions. Our research focuses on molecular pathways that are important for the recognition and control of bacterial pathogens as well as those that orchestrate inflammatory responses during infection.

Students are part of a dynamic research team to maximise their research training and experience. The research employs a series of molecular, cell biological and immunological techniques to define novel molecular and cellular aspects of the host response to infection.

Research Projects
• Innate immune recognition of pathogenic bacteria
• Molecular regulation of host anti-microbial defence mechanisms

Dr Andrew Brooks

Research Field
Class I cytokine receptor signalling and HLA-G regulation of inflammation

Research Synopsis
Our research focuses on understanding the mechanisms of cytokine receptor signalling and how these receptors regulate cell behavior and functions such as inflammation, blood cell formation, postnatal growth, obesity, and lactation. Dysregulated cytokine receptor signalling leads to many diseases such as cancer and inflammatory diseases such as liver fibrosis, inflammatory bowel disease, and arthritis. The development of novel molecules that target cytokine receptors or their signalling pathways may lead to important therapeutics for a wide variety of clinically important diseases.

Research Projects
• Understanding dysregulated cytokine receptor signalling in leukaemia
• Defining the mechanisms of cytokine receptor signalling
• Developing novel therapeutic peptides targeting cytokine receptors
• Defining the mechanism of HLA-G inhibition of NK cell activation
Dr Janin Chandra

Research Field
Immunobiology of antigen-presenting cells in health and disease

Research Synopsis
Immunotherapy aims to correct a malfunctioning immune system to combat a variety of diseases including cancer, autoimmunity or allergies. Many immunotherapy targets have been identified and some have been developed into powerful treatments. Immunotherapy largely targets effector T cell responses which are either suppressed or falsely activated. Professional antigen-presenting cells such as dendritic cells (DCs) play a pivotal role in T cell fates and are hence a desired immunotherapy target. Immunotherapy has the potential to effectively harness DCs to prime e.g. cancer-specific cytotoxic T cell responses or shut-down self- or allergen-reactive T cells. My research focusses on understanding dendritic cell diversity and fate, and how manipulation of dendritic cells can improve disease outcomes.

Research Projects
• Characterising the diversity of dendritic cells in steady state and disease
• Defining and optimising the mechanisms of action of therapeutic vaccine candidates

Professor Paul Clarke

Research Field
Cell cycle control in cancer

Research Synopsis
Paul Clarke is working on the role of cell division in the development of cancer and in the response of cancer cells to cancer therapies. His research group investigates the role of tumour suppressors and oncogenes that control mitosis and mitotic cell death. His group study the function of proteins in tumour cells using biochemical techniques to identify their post-translational modifications (phosphorylation, ubiquitylation) and advanced microscopy to analyse their localisation and stability in live cells. The group aim to understand why tumour cells often have abnormal numbers of chromosomes and why they become resistant to cell death. This work will improve our understanding of how cancer develops and will provide new strategies for cancer therapy.

Research Projects
• The role of tumour suppressors in mitosis
• Control of mitotic cell death
• The relationship between cellular ageing and cancer
Professor Riccardo Dolcetti

Research Field
New strategies to improve cancer immunotherapy and immunomonitoring

Research Synopsis
Cancer immunotherapy harnesses and enhances the power of the immune system to fight cancer and represents the most promising new cancer treatment approach. Indeed, immunotherapy constitutes an effective treatment for patients with certain types of cancer that have been resistant to chemotherapy and radiation treatment (e.g. melanoma). Nevertheless, the clinical benefit provided by current immunotherapeutic approaches is still limited to 25-30% of treated cancer patients. By exploiting the most advanced technologies (nanoparticle-based vaccines, neo-antigens identification and validation, etc.) and suitable preclinical models, we are developing innovative strategies potentially able to improve current approaches. We are also investigating a range of different combinations of immunotherapeutic approaches and conventional treatment modalities to identify the most effective and tailored therapeutic schedule. Our final goal is to provide effective personalised treatments for cancer patients with reduced non-specific side-effects.

Research Projects
• Cancer vaccines exploiting the in vivo delivery of tumour specific (neo-)antigens to cross-presenting dendritic cells to improve the immunotherapy for melanoma, breast cancer, lymphoma, glioblastoma and virus-driven tumours
• Development and validation of clinically applicable protocols able to identify tumour-specific immunogenic neo-epitopes to be exploited in personalised vaccination approaches
• Identification and exploitation of new modalities to induce immunogenic cell death for immunotherapeutic purposes

Professor David Evans

Research Field
Genetics of complex traits and diseases; statistical genetics and genetic epidemiology

Research Synopsis
Our group aims to elucidate the genetic and environmental basis of complex traits and diseases using statistical approaches that are applied to “big data”.

We work on a diverse range of diseases and phenotypes including (but not limited to) osteoporosis, autoimmune disease, perinatal phenotypes like birthweight, and systemic sepsis (infection).

Our research involves many of the world’s largest datasets (some >500,000 individuals) and a variety of different technologies including RNA-Seq, genome-wide association (GWAS) SNP arrays, epigenome-wide methylation arrays, meta-genomic community profiling, and NMR metabolomics.

We are also very active in the development of new statistical models to answer interesting questions about biology. We regularly publish in top tier journals like Nature and Nature Genetics and are proud of our perfect record of 1st class honours students.

We are searching for high quality students that are highly numerate ideally with a background in genetics, statistics, epidemiology, psychology and/or computer science.

Research Projects
• Using genetics to unravel the relationship between low birthweight and future risk of cardio-metabolic disease in later life
• Investigating the genetic and genomic basis of septic shock
• The genetic basis of osteoporosis
Professor Ian Frazer

Research Field
Tumour immunology

Research Synopsis
As immunologists, we work on the skin immune system and how the immune responses at squamous epithelial surfaces are influenced by epithelial proliferative disease and by the skin microbiome.

We work with animal models of human squamous skin cancer, and with patients with human squamous skin cancers, as part of a consortium including experts in microbiology, ecogenomics, genomics, proteomics and clinical management.

Research Projects
• Effects of epithelial proliferation on local immune effector function in skin
• Bacterial colonisation as a driver of epithelial proliferation and inflammation
• Influence of viral infection on local immune responses and epithelial proliferation

E ifrazer@uq.edu.au
P 07 3443 8042
researchers.uq.edu.au/researcher/228

Dr Fernando S. F. Guimaraes

Research Field
NK cell biology and immunotherapy

Research Synopsis
Natural killer (NK) cells can recognise and respond to tumour cells through a broad range of inhibitory and activating receptors. The regulation of these responses emerges from the integrated balance of activating and inhibitory signals at the NK cell-tumour interface, which help NK-cells discriminate between altered target cells (cancer or pathogen-infected cells) and healthy cells. However, both cancer cells and pathogens can still evade NK cells’ detection and killing action. My research focus is to develop effective therapies that maximise NK cell responses—an emerging field with great potential for applications in the clinical management of disseminated cancer and sepsis prevention. For example, my work has uncovered that members of the Transforming Growth Factor (TGF) beta superfamily are potent inhibitory checkpoints of NK cells function. Their presence within the tumour microenvironment and infection sites can lead to tumour immunity and sepsis, respectively. This knowledge is opening a new paradigm for developing cancer and infection immunotherapy approaches. My vision is to build from this discovery and other advances in the field to generate a novel pipeline of cell immunotherapies both “targeting” NK-cells and “based on” NK-cells to increase NK-cells function against cancer (e.g., anti-metastatic function) and sepsis.

Research Projects
• Developing and tailoring NK cell-based cancer immunotherapies
• Deciphering regulatory signalling pathways in NK cells
• Elucidating the role of NK cells in inflammatory disorders

E fguimaraes@uq.edu.au
P 07 3443 7049
di.uq.edu.au/profile/3223/fernando-fonseca-guimaraes
Professor Nikolas Haass

Research Field
Melanoma cell biology and experimental melanoma therapy

Research Synopsis
Using cutting-edge technology, including real-time cell cycle and cell death imaging in several three-dimensional cell culture and in vivo models, we investigate the biology of tumour heterogeneity with the goal to develop novel therapeutic approaches by simultaneously targeting different melanoma subpopulations.

Research Projects
- Modulating phenotypic melanoma heterogeneity and lymphocyte infiltration to improve both targeted and immune therapy
- The role of microtubule-dependent ‘mechanosensing’ in melanoma plasticity, invasion and therapy
- Defining molecular signatures that orchestrate tumor subpopulations in melanoma models mimicking tumor microenvironment and drug tolerance
- Induction of endoplasmic reticulum stress to potentiate immunogenic cell death to improve melanoma therapy
- Generating mathematical models of 4D multicellular melanoma spheroids (joint project with Professor Matthew Simpson, QUT)

Dr Emma Hamilton-Williams

Research Field
Immunology and pathogenesis of type 1 diabetes

Research Synopsis
Type 1 diabetes is an autoimmune disease with no cure. Our laboratory focuses on investigating the immune defects leading the destruction the insulin producing cells of the pancreas and type 1 diabetes and studying immunotherapeutic strategies to correct these defects. We also study environmental drivers that may trigger the autoimmune process, with a focus on the role of the gut microbiota and how the microbiota may be manipulated to prevent disease.

The Hamilton-Williams laboratory currently has two major areas of focus.

1. Immunotherapy for type 1 diabetes. We are investigating the use of a liposome system for antigen-specific immunotherapy in type 1 diabetes. Our goal is to restore tolerance in autoreactive islet-specific T cells. We are using multi-dimensional profiling of antigen-specific T cells to optimise our immunotherapy strategy.

2. The role of the microbiota in type 1 diabetes. Using patient stool samples and a novel proteomic approach we seek to understand how changes in the gut microbiota function in type 1 diabetes alter the islet immune response.

We are using germ-free mice colonised with human derived microbiota to study how changes in the gut flora of patients may modify the immune response and lead to disease. We are also using human cohort and intervention studies with a multi-omic analysis approach to understand how the host and microbiota interact in the lead-up to disease onset.

Research Projects
- Host-microbiota interactions in the pathogenesis of type 1 diabetes: wet lab and dry lab (bioinformatics based) projects available
- Nanoparticle based immune therapies for tolerance induction in type 1 diabetes
Professor Kiarash Khosrotehrani

Research Field
Skin regeneration, skin cancer

Research Synopsis
The Experimental Dermatology Group has three main streams focused on regenerative medicine and cancer in Dermatology and skin biology.

Research Projects
(1) Keratinocyte cancers are the most frequent malignancy in humans. In particular, basal cell carcinomas affect one in 3 Australian from age 70. The main morbidity of basal cell carcinoma is related to the onset of new tumours in the same sun-exposed skin field. It is therefore essential to develop new strategies to prevent the onset of new basal cell carcinomas. Proposed projects:
 a - Developing a preventive immunotherapy against Basal cell carcinoma
 b - Epidermal ablation to reduce skin cancer incidence

(2) Melanoma is the most lethal form of skin cancer. The development of metastases is reliant on the activation of vascular stem cells in the tumour and in the site of future metastases. Proposed projects:
 a - To develop biomarkers for the identifications of patients at risk of melanoma progression and metastases.
 b - To develop inhibitors of vascular stem cells to prevent melanoma metastasis.

(3) Skin wound vascularisation is an essential step of the healing process to supply oxygen and nutrient to the surrounding cells. Upon wound closure, most endothelial cells from blood vessels undergo a mesenchymal transition and contribute to scarring. In this project we aim to evaluate the impact of IL6 signalling on vascular stem cells’ transition towards a mesenchymal and pro-fibrotic fate.

In all projects there are ample opportunities for strong clinical linkage and PhD or MD PhD.

Dr Xiaowen Liang

Research Field
Liver cancer

Research Synopsis
Liver cancer is the fastest increasing cancer with the 4th highest cancer mortality rate worldwide. Despite significant advances in the treatment of liver cancer, response rates of current treatments are still low. Our projects aim to investigate and understand the role of tumour self-seeding and tumour microenvironments (hepatic stellate cells) in liver cancer progression and chemoresistance. The success of these studies will identify a new cell population within primary tumour with prognostic and therapeutic potential and provide new strategies to improve the response to current treatments and prevent the relapse of liver cancer.

Research Projects
• Therapeutic targeting of tumour self-seeded cells in liver cancer
• Investigating the mechanism of chemotherapy-induced hepatic stellate cell activation in liver cancer
Dr Aideen McInerney-Leo

Research Field
Translating genomics into clinical practice

Research Synopsis
I am a clinician-academic whose interactions with patients have shaped my research questions and fuelled my enthusiasm for the importance of clinical research. I trained as a genetic counsellor and my research now focuses on the integration of genomics into clinical care. My research program has had three primary themes: evaluating the psychosocial impact of genetic conditions and/or genetic testing; evaluating genetics education preferences for patients and healthcare providers; and using next-generation sequencing to increase diagnostic yield for rare disorders.

Research Projects
• Exploring whether genetic fatalism affects sun-related health behaviours in high-risk individuals following genetic testing
• Evaluating the efficacy of videos to promote informed consent for genetic testing
• Mainstreaming Genetic Testing for Melanoma into Dermatology Practice

Dr Ahmed Mehdi

Research Field
Genomic medicine, Computational Immunology, Bioinformatics and COVID-19 biomarkers

Research Synopsis
The novel coronavirus disease-2019 (COVID-19) is a recently emerged human pathogenic disease and announced as a pandemic by the WHO. A number of genomic, proteomics and cellular markers have been uncovered that correlate with disease onset. The COVID-19 symptoms can vary from modest, mild to severe respiratory distress syndrome. The factors that trigger COVID-19 patients to get severe disease are largely unknown, but are believed to be a combination of prior health conditions and some immune system dysregulation. Our vision is that a better understanding of COVID-19 progression mechanisms can be established by integrating the huge resource of the heterogeneous data that is currently being generated in COVID-19 research.

In this research project the student(s) will learn the process of performing Biostatistics and Bioinformatics approaches towards predictive COVID-19 markers. A search strategy has been already established for the identification of studies of interest. They will use and learn R programming language, linear and/or probabilistic modelling.

Research Projects
• Prediction models of severe onset of COVID-19
• Developing connectivity maps of COVID-19 disease
Dr Fiona Simpson

Research Field
Cancer immunotherapy

Research Synopsis
The laboratory is developing adjuvant / combination therapy to improve efficacy of treatment for monoclonal antibody therapy and to decrease innate and acquired resistance. Consequently the laboratory also has cell biological projects on immune cell trafficking, proteins involved in biogenesis of the immunological synapse and monitoring of immune responses during therapy and tumour regression.

Research Projects
- Combination therapies to improve monoclonal antibody therapy outcomes
- Cell biological mechanisms of biogenesis of the immune synapse

Professor Mark Morrison

Research Field
Microbial biology and metagenomics

Research Synopsis
The microbiome is a new frontier in biomedical research. It is the fusion of the traditional fields of medical microbiology (pathogenesis and epidemiology) with environmental microbiology and ecology (the study of microbial diversity and function in their natural environment).

We are investigating and defining the roles of the microbiome in unique clinical studies of Asian and Australian cohorts to advance a pathophysiology-based classification of gastrointestinal diseases, such as Crohn’s disease.

To do this, we use innovations in microbial genomics and metagenomics to better characterise the metabolic and bioactive landscape of the gut microbiome during health and disease; and how diet modulates the ecological drivers of the microbiome.

Our overarching objective is to better treat and prevent these diseases by thwarting the underlying mechanisms, rather than controlling symptoms.

Research Projects
- Not all methane is created equally: the role of methanogens and the consequences of a diet-induced inflammatory microbiota
- Epithelial metabolism as a mediator of host-microbiome interactions in inflammatory bowel disease
- The Eastern IBD Gut Microbiota (ENIGMA) project – a comparative study of diet x microbiome interactions in the East and West as drivers of Crohn’s disease incidence
- The bioactive landscape of the skin microbiota
Dr Chris Slape

Research Field
Leukaemia; pre-leukaemia, stem cells

Research Synopsis
Pre-leukaemia is any abnormal haematopoietic state which precedes leukaemia. In some cases (eg. myelodysplastic syndrome), it is clinically apparent. In other cases (eg. T cell leukaemia), patients do not present until acute leukaemia is apparent, and the pre-leukaemic phase can be considered a missed opportunity for therapy.

One of the features of many pre-leukaemic states is, paradoxically, a deficiency of cell numbers in certain stem cell and progenitor cell populations. In our models, we have found that restoration of these cell numbers, by various manipulations, mitigates or abolishes progression to full leukaemia. Our current aims are centred on understanding the mechanisms by which this occurs, and identifying ways to exploit this finding for therapeutic implementation.

We use in vivo and in vitro models, multi-colour flow cytometry, single cell RNA sequencing and imaging technologies to drive our research. All projects have flexible scope and can accommodate the diverse interests of students.

Research Projects
• T cell pre-leukaemia detection in humans
• Eph-ephrin interactions in pre-leukaemia
• Cell competition as a tumour suppressor mechanism
• Therapeutic progenitor restoration in pre-leukemic mice
• Imaging analysis of deficient and restored progenitor populations

Professor H. Peter Soyer

Research Field
Early detection of melanoma

Research Synopsis
Professor Soyer is an internationally renowned academic dermatologist with over 30 years experience in the field with special expertise in preventative dermatoncology, dermatopathology and dermatologic imaging. His main research focus is skin cancer (both melanoma and keratinocyte skin cancer), with a particular interest in early detection strategies and expanding the concept and applications of teledermatology and teledermoscopy. He is Chief Investigator of the CRE for the Study of Naevi was awarded an NHMRC Partnership Grant to implement an innovative 3D teledermatology network for the early detection of melanoma in high risk individuals. He was awarded a MRFF Practitioner Fellowship, Next Generation Clinical Researchers Program. Most recently he obtained funding from the Australian Cancer Research Foundation (ACRF) to establish the Australian Centre of Excellence in Melanoma Imaging & Diagnosis (ACEMID). ACEMID will enable establishment of 15 3D total body imaging systems, linked by a telemedicine network, across Australia’s east coast, and facilitate research in the early detection of melanoma.

Research Projects
• CRE for the Study of Naevi
• NHMRC Partnership Grant (APP1153046) to implement an innovative 3D teledermatology network for the early detection of melanoma in high risk individuals
• Australian Cancer Research Foundation (ACRF) Australian Centre of Excellence in Melanoma Imaging and Diagnosis (ACEMID)
Dr Mitchell Stark

Research Field
Melanoma/skin cancer genomics and biomarker discovery

Research Synopsis
My research group is based within the Dermatology Research Centre at UQDI and our overall theme is to identifying biomarkers for the early detection of melanoma and skin cancers. By preventing melanoma/skin cancer formation in its earliest stages, we can effectively put the brakes on and halt the formation of metastatic disease. At the other end of the spectrum, late-stage melanoma patients are currently being treated with effective therapies but unfortunately this doesn't apply to everybody. By investigating the clinical utility of predictive and prognostic ‘liquid biopsy’ biomarkers, we aim to improve the overall efficacy of current therapies.

Together with our biomarker discovery, we are also currently creating a “pre-cancer” atlas of over-lapping genomic data (exome, RNA-seq, methylation) from skin and naevi to identify novel mechanisms for melanoma development which may provide avenues for potential therapeutic intervention.

Research Projects
• Melanoma and Naevi genomics and transcriptomics
• MicroRNA analysis of the progression of early skin lesions toward SCC
• Predictive and prognostic biomarkers for melanoma brain metastasis
• Functional validation of molecular pathways involved in Seborrhoeic Keratosis development

Associate Professor Ray Steptoe

Research Field
Understanding the mechanisms and requirements of peripheral T-cell tolerance

Research Synopsis
Peripheral T-cell tolerance crucially limits the development of immune-mediated diseases such as type 1 diabetes and allergies.

The research performed is directed at determining how the immune system controls T-cell responses and studies focus on the role antigen-presenting cells play in this process and how this might be exploited for therapeutic benefit.

Experimental studies employ a range of genetically-modified transgenic and gene-deficient mice to explore what the requirements for T-cell are and the molecular mechanisms that contribute.

Research Projects
• Gene expression profiling in peripheral tolerance induction
• Turning-off T-cell responses that underlie autoimmune diabetes
• Therapy of allergic airway inflammation using gene therapy
• Does B-cell lymphoma evade immune attack by inducing T-cell tolerance?
Professor Michael Stowasser

Research Field
Pathogenesis (including genetics), diagnosis and management of hypertension, with an emphasis on secondary endocrine forms

Research Synopsis
The Endocrine Hypertension Research Centre conducts research into all forms of human hypertension, with particular expertise in endocrine varieties, especially primary aldosteronism (PA), renovascular hypertension, pheochromocytoma and the syndrome of familial hypertension and hyperkalemia (Gordon’s syndrome, named after the Centre’s founder). Its demonstration 20 years ago that PA is ten times more common than previously thought led to the identification of thousands of patients in whom hypertension has been cured or markedly improved following surgical or specific medical treatment. The centre has made major contributions to improving diagnosis and management of PA, from screening to confirmatory testing (recently designing and validating the highly reliable yet streamlined seated saline suppression test) to differentiating surgically curable unilateral adrenal forms from bilateral forms (treated medically). It also described a new familial variety, and helped elucidate its genetic basis (Nature Genetics, 2018). A recently formed international collaboration with five other research groups in Europe and USA is exploring how dietary potassium regulates blood pressure.

Research Projects
• Improving methods to detect and diagnose primary aldosteronism (PA) and its subtypes
• Exploring genotype/phenotype correlations in patients with aldosterone-producing adenomas
• Identifying genetic mutations responsible for PA
• Exploring renal molecular pathways by which potassium regulates blood pressure
• The role of the mineralocorticoid receptor in regulating brown fat and metabolic status

E m.stowasser@uq.edu.au
P 07 3176 2694
researchers.uq.edu.au/researcher/20

Associate Professor Rick Sturm

Research Field
Human pigmentation genetics, naevi and melanoma

Research Synopsis
The overall goal of my research group is to combine population genetic studies of human pigmentation with basic discoveries in the molecular and cellular biology of melanocyte cells that are responsible for skin, hair and eye colour. We are also conducting a study of germline and somatic mutations in genes associated with total body mole count, and in skin biopsies and cultured naevus cells.

This information will be used to understand individual risk of developing melanoma and to design a clinical management program for preventative screening of melanoma.

This will allow a personalised assessment of risk incorporating individual genotype and phenotypic host risk factors together with regular total body screening of dermoscopic patterns of naevi.

Research Projects
• Genetics of human pigmentation traits including comparing individuals of high and low mole number, and looking at genes controlling mole morphology, melanogenesis, tanning, freckling and iris pigmentation
• Cell biology of human pigmentation through characterisation of primary cultures of human melanocytes alone or together with keratinocytes to assay function of genes and examine the UV induced tanning response
• Whole exome sequence and bioinformatic analysis of patients at high risk of melanoma and cell culture of melanocytic lesions

E r.sturm@uq.edu.au
P 07 3443 7380
researchers.uq.edu.au/researcher/96
Professor Ranjeny Thomas

Research Field
Antigen-specific immunotherapy of autoimmune disease

Research Synopsis
We have developed nanoparticle-based immunotherapy for antigen-specific prevention and treatment of autoimmune disease.

To understand the T cell response to autoantigens in autoimmune diseases of skin, thyroid, salivary glands, joints and pancreatic islets we are isolating and characterising the T cell receptors of antigen-specific cells and T cell clones.

We are then developing tests to identify those cells in patient blood, so that suitable individuals can be identified and cells can be monitored after treatment.

Research Projects
• TCR analysis of autoreactive T cells

Professor John Upham

Research Field
Immune dysregulation in asthma and host defence against respiratory viruses

Research Synopsis
Our program of translational research is focussed on the study of immune function and dysfunction in asthma, and host defence against respiratory viruses, especially human rhinoviruses.

We are interested in the mechanisms leading to excessive airway inflammation in asthma, and why people with asthma are unusually susceptible to asthma attacks during respiratory viral infections.

Our aim is to discover new therapeutic targets in severe asthma.

Research Projects
• The function of antigen presenting cells, innate lymphoid cells and NK cells
• The role of polarising cytokines such as IL-33, IL-25 and TSLP in altering host defence against viruses
• How macrolide antibiotics alter immune function
• How dietary fibre and the gut microbiome alter immune function in chronic lung disease
Professor Brandon Wainwright

Research Field
Developing new therapies for paediatric brain cancer

Research Synopsis
Brain cancer is the most common cause of cancer-related death in children. Since the establishment of core radiotherapy and chemotherapy approaches around 25 years ago, overall survival has not improved at all despite many clinical trials. Additionally, for those children who survive they commonly suffer serious long-term side effects of the treatment itself. Therefore there is an urgent need for better treatments to improve survival, and to discover approaches to both prevent and treat the side effects of therapy.

The Wainwright laboratory discovered the first gene known to cause brain cancer in children. Since that time we have focused on defining the cells of origin of the disease, the genetic pathways that lead to tumour growth and metastasis, and the development and testing of new therapies. Our approaches include cell biology, developmental neurobiology, genetics/genomics/bioinformatics and, increasingly, immunotherapies. We have strong and active clinical linkages locally, nationally and internationally and a number of projects that are either in the clinic, or will be in the next 12 months.

Research Projects
• Manipulating the inflammatory response to reduce the side effects of chemotherapy and radiotherapy
• The discovery of genes which influence the response of medulloblastoma to radiotherapy
• Factors which regulate the blood-brain barrier and therapeutic effectiveness in brain cancer
• Attacking cell cycle regulation and the cytoskeleton in medulloblastoma – the molecular basis of the response and drug resistance
• A liquid biopsy approach to monitoring molecular basis of therapeutic response and relapse in brain tumour patients

Dr Haolu Wang

Research Field
Mesenchymal stem cells, liver diseases, liver cancer

Research Synopsis
Mesenchymal stem cells (MSCs) show homing in injured, inflamed or ischemic liver as well as liver cancer, together with adhesion to the liver sinusoidal endothelium (engraftment) mediated through CD29 and CD44. Until now, MSCs have been used as a therapy for liver diseases in 55 clinical trials (searching results from clinicaltrial.gov). The extent of cell engraftment and function has been shown to be related to the dosing route and number of hepatocyte affected.

We are generating functional normal liver cells and liver cancer cells using in vitro 3D cell culture platform, and studying the interaction and crosstalk between cancer cells, MSCs, MSC-derived liver cells, and liver cells. We are also investigating the in vivo functional integration of human MSC-derived liver cells into mouse livers and assessing if these cells can be used as therapeutics against liver diseases. In complementary studies, we are studying the seeding and migrating process of cancer cells in the liver.

Research Projects
• Generation of functional liver cells from mesenchymal stem cells for cell therapy
• Disarming the cancer cells form seeding and migrating to the liver
Dr Nicole Warrington

Research Field
Genetics of early life growth; Statistical genetics

Research Synopsis
The development of obesity often occurs in early life and tends to persist into adulthood. Unfavourable growth in early life is associated with adverse cardio-metabolic outcomes in later life, such as type two diabetes and heart disease. Understanding the mechanisms underlying this relationship is a vital step in combating these lifestyle diseases and evaluating the likely success of early interventions. Our research investigates the genetic basis of early life growth and uses genetic information to understand the links between early life growth and cardio-metabolic health in adulthood.

Research Projects
- What maternal characteristics modify the early life environment and cause rapid early life weight growth in her offspring?
- Is there a time period in early life where rapid weight growth causes increased risk of cardio-metabolic disease in later life, independent of adult obesity?

Dr James Wells

Research Field
Tumour immunology

Research Synopsis
Our group has 2 major areas of focus.

1. Immune system recognition and destruction of squamous skin cancers.
 We are investigating the mechanisms through which immune cells destroy tumours. Our goal is to determine how immune cells destroy tumours using animal models, so that we can correlate this information to patients in order to highlight appropriate points and strategies for immunotherapy.

2. Tumor behavior that permits squamous skin cancers to evade host immunity.
 Using genetically-linked regressor and progressor tumours, we are seeking to understand how a tumour modifies the immune system in order to become established. Our goal is to understand the key early immunological events that allow tumours to evade the immune system.

Research Projects
- Assessing mechanisms of immune-control for their role in mediating tumor regression
- Defining how tumours harness the immune system in order to establish themselves
Dr Timothy Wells

Research Field
Host-pathogen interactions in chronic lung disease

Research Synopsis
Our laboratory focuses on the interactions between bacterial pathogens and the host immune response during chronic lung infections such as bronchiectasis and cystic fibrosis.

Although antibody usually protects against infection, our laboratory has identified a specific type of ‘inhibitory antibody’ that actually protects colonising bacteria from immune killing.

Patients with this ‘inhibitory antibody’ were found to have worse lung function.

We aim to understand both the bacterial causes and the induction of the immunological response that leads to inhibition of bacterial killing.

We also have a keen interest in studying inhibitory antibodies in the context of the whole lung microbiome in patients by using a mixture of molecular microbiology, immunology and genomic approaches.

Research Projects
- The impact of inhibitory antibodies on the human microbiota
- Antibody-mediated inhibition of phagocytosis
- Antibody-mediated enhancement of inflammation

Professor Di Yu

Research Field
T-cell Immunology and Immunotherapy

Research Synopsis
Dr Di Yu is a leading immunologist with a major research focus on the function of T cell subsets in autoimmune diseases, infection and cancer. His research utilises mouse models to dissect immune mechanisms, analytic approaches to monitor individuals’ immune features and clinical trials to modulate immune responses.

Research Projects
- The regulation of T cell-B cell interaction in vaccination and autoimmune diseases
- Protective and pathogenic function of cytotoxic T cells in infection and cancer
- Cytokine-based immunotherapy
- Using machine learning to understand the human immune system
For more information, please contact

T: +61 7 3443 7018
E: di.undergrad@uq.edu.au
W: di.uq.edu.au/study
A: The University of Queensland Diamantina Institute
 Level 7, Translational Research Institute
 37 Kent Street, Woolloongabba Q Australia 4102